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Abstract—Image compression is one of the most fundamental techniques and commonly used applications in the image and video
processing field. Earlier methods built a well-designed pipeline, and efforts were made to improve all modules of the pipeline by
handcrafted tuning. Later, tremendous contributions were made, especially when data-driven methods revitalized the domain with their
excellent modeling capacities and flexibility in incorporating newly designed modules and constraints. Despite great progress, a
systematic benchmark and comprehensive analysis of end-to-end learned image compression methods are lacking. In this paper, we
first conduct a comprehensive literature survey of learned image compression methods. The literature is organized based on several

aspects to jointly optimize the rate-distortion performance with a neural network, i.e., network architecture, entropy model and rate
control. We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and
provide insights into their historical development routes. With this survey, the main challenges of image compression methods are
revealed, along with opportunities to address the related issues with recent advanced learning methods. This analysis provides an
opportunity to take a further step towards higher-efficiency image compression. By introducing a coarse-to-fine hyperprior model for
entropy estimation and signal reconstruction, we achieve improved rate-distortion performance, especially on high-resolution images.
Extensive benchmark experiments demonstrate the superiority of our model in rate-distortion performance and time complexity on

multi-core CPUs and GPUs.

Index Terms—Machine learning, image compression, neural networks, transform coding

1 INTRODUCTION

MAGE compression is a fundamental technique in the signal

processing and computer vision fields. The constantly devel-
oping image and video compression methods facilitate the
continual innovation of new applications, e.g., high-resolution
video streaming and augmented reality. The goal of image
compression, especially lossy image compression, is to pre-
serve the critical visual information of the image signal while
reducing the bit-rate used to encode the image for efficient
transmission and storage. For different application scenarios,
trade-offs are made to balance the quality of the compressed
image and the bit-rate of the code.

In recent decades, a variety of codecs have been devel-
oped to optimize the reconstruction quality with bit-rate
constraints. In the design of existing image compression
frameworks, there are two basic principles. First, the image
signal should be decorrelated, which is beneficial in improv-
ing the efficiency of entropy coding. Second, for lossy com-
pression, the neglected information should have the least
influence on the reconstruction quality, i.e., only the least
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important information for visual experience is discarded in
the coding process.

The traditional transform image compression pipeline
consists of several basic modules, i.e., transform, quantiza-
tion and entropy coding. A well-designed transform for
image compression transforms the image signal into compact
and decorrelated coefficients. Discrete Cosine Transform
(DCT) is applied to the 8 x 8 partitioned images in the
JPEG [1] image coding standard. Discrete Wavelet Transform
(DWT) in JPEG 2000 [2] further improves coding perfor-
mance by introducing a multiresolution image representa-
tion to decorrelate images across scales. Then, quantization
discards the least significant information by truncating less
informative dimensions in the coefficient vectors. Methods
are introduced to improve quantization performance, includ-
ing vector quantization [3] and trellis-coded quantization [4].
After that, the decorrelated coefficients are compressed with
entropy coding. Huffman coding is first employed in JPEG
images. Then, improved entropy coding methods such as
arithmetic coding [5] and context-adaptive binary arithmetic
coding [6] are utilized in image and video codecs [7]. In addi-
tion to these basic components, modern video codecs, e.g.,
HEVC and VVC [8], employ intra prediction and an in-loop
filter for intra-frame coding. These two components are also
applied to BPG [9], an image codec, to further reduce spatial
redundancy and improve the quality of the reconstruction
frames, especially interblock redundancy. However, the
widely used traditional hybrid image codecs have limita-
tions. First, these methods are all based on partitioned blocks
of images, which introduce blocking effects. Second, each
module of the codec has a complex dependency on others.
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Thus, it is difficult to jointly optimize the whole codec. Third,
as the model cannot be optimized as a whole, the partial
improvement of one module may not bring a gain in overall
performance, making it difficult to further improve the
sophisticated framework.

With the rapid development of deep learning, there have
been many works exploring the potential of artificial neural
networks to form an end-to-end optimized image compres-
sion framework. The development of these learning-based
methods has significant differences from traditional meth-
ods. For traditional methods, improved performance
mainly comes from designing more complex tools for each
component in the coding loop. Deeper analysis can be con-
ducted on the input image, and more adaptive operations
can be applied, resulting in more compact codes. However,
in some cases, although the performance of the single mod-
ule is improved, the final performance of the codec, i.e., the
superimposed performance of different modules, might not
increase much, making further improvement difficult. For
end-to-end learned methods, as the whole framework can
be jointly optimized, performance improvement in a mod-
ule naturally leads to a boost to the final objective. Further-
more, joint optimization causes all modules to work more
adaptively with each other.

In the design of an end-to-end learned image compression
method, two aspects are considered. First, if the latent repre-
sentation coefficients after the transform network are less
correlated, more bit-rate can be saved in the entropy coding.
Second, if the probability distribution of the coefficients can
be accurately estimated by an entropy model, the bit-stream
can be utilized more efficiently and the bit-rate to encode the
latent representations can be better controlled, thus, a better
trade-off between the bit-rate and the distortion can be
achieved. The pioneering work of Toderici et al. [10] presents
an end-to-end learned image compression that reconstructs
the image by applying a recurrent neural network (RNN).
Meanwhile, generalized divisive normalization (GDN) [11]
was proposed by Ballé et al. to model image content with a
density model, which shows an impressive capacity for
image compression. Since that time, there have been numer-
ous end-to-end learned image compression methods
inspired by these frameworks.

Although tremendous progress has been made in end-to-
end learned image compression, there is a lack of a system-
atic survey and benchmark to summarize and compare dif-
ferent methods thoroughly. To this end, in this work, we
conduct a comprehensive survey of recent progress in learn-
ing-based image compression as well as a thorough bench-
marking analysis on different methods of learning-based
image compression. The contributions and novelties of
existing works are summarized and highlighted, and future
directions are illustrated. With the summarized guidance
from the survey and benchmark, we propose a novel end-
to-end learned image compression framework that offers
state-of-the-art performance.

The contributions of this paper are as follows:

e We comprehensively summarize the existing end-to-
end learned image compression methods. The con-
tributions and novelties of these methods are dis-
cussed and highlighted. The technical improvements
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of these methods are commented on based on their
categorizations, and we demonstrate a clear picture
of the design methodologies and shows interesting
future research directions.

e Inspired by the insights and challenges summarized
for the existing approaches, we further explore the
potential of end-to-end learned image compression
and propose a coarse-to-fine hyperprior modeling
framework for lossy image compression. The pro-
posed method is shown to outperform existing
methods in terms of coding performance, while
keeping the time complexity low on parallel comput-
ing hardwares.

e We conduct a thorough benchmark analysis to com-
pare the performance of existing end-to-end compres-
sion methods, the proposed method, and traditional
codecs. The comparison is conducted fairly from dif-
ferent perspectives, i.e., the rate-distortion perfor-
mance on different ranges of bit-rate or resolution and
the complexity of the implementation.

Note that, this paper is the extension of our earlier publi-
cation [12]. We summarize the changes here. First, this
paper additionally focuses on the thorough survey and
benchmark of end-to-end learned image compression meth-
ods. In addition to [12], we summarize the contributions of
existing works on end-to-end learned image compression in
Section 3, and present a more detailed comparative analysis
of the merits towards high-efficiency end-to-end learned
image compression in Sections 4 and 5. Second, we conduct
a benchmark evaluation of existing methods in Section 7.2,
where we present the comparative experimental results on
two additional datasets, in both PSNR and MS-SSIM. Third,
we raise the novel problem of cross-metric performance
with respect to image compression methods in Section 7.4,
where we present the empirical analysis on the phenome-
non of cross-metric bias and we briefly discuss future
research directions to address the related issues.

The rest of the paper is organized as follows. In Section 2,
we first formulate the image compression problem, espe-
cially focusing on end-to-end learned schemes. After that,
in Section 3, we briefly summarize the main contributions
of existing research. Then, in Section 4, we categorize exist-
ing learned image compression methods according to their
backbone models. After that, special attention is paid to
the rate control technique in Section 5, which is the very spe-
cialized component in image compression compared with
other deep-learning processing or understanding methods.
Inspired by our survey and analysis, we introduce our new
proposed method in Section 6. Later, in Section 7, we intro-
duce the benchmarking protocols and make benchmarking
comparisons of existing methods. Finally, in Section 8, we
draw conclusions and discuss potential future research
directions.

2 PROBLEM FORMULATION

Natural image signals include many spatial redundancies
and have the potential to be compressed without much
degradation in perceptual quality. Considering practical
constraints on bandwidth and storage, lossy image com-
pression is widely adopted to minimize the bit-rate of
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representing a given image to tolerate a certain level of dis-
tortion. The compression framework usually consists of an
encoder-decoder pair. Given an input image x with its dis-
tribution py, the encoder with an encoding transform £ and
a quantization function Q, a discrete code y is generated as
follows:

y = Q(E(x;6¢)), (1)

where 6¢ denotes the encoder parameters to be tuned dur-
ing the learning procedure. To obtain the pixel representa-
tion of the image, the corresponding decoder D reconstructs
the image X from the code y as follows:

x = D(y;0p) = D(Q(E(x; b¢)); Op), )

where 0p denotes the parameters in D.

Two kinds of metrics, i.e., distortion D and bit-rate R,
give rise to rate-distortion optimization R+ AD, the core
problem of lossy image compression. The distortion term D
measures how different the reconstructed image is from the
original image, and it is usually measured via fidelity-
driven metrics or perceptual metrics as follows:

D= EXNPx [d(xa )A()]a (3)

where d denotes the distortion function. The rate term R
corresponds to the number of bits to encode y, which is
bounded according to the entropy constraints. However,
the actual probability distribution of the latent code vy,
denoted as py, is unknown, making accurate entropy calcu-
lation intractable. Thus, we usually utilize an entropy model
gy to serve as the estimation of py for entropy coding. Hence,
the rate term can be formulated as the cross entropy of p,
and gy as follows:

R = H(py, ¢y) = Eyp, [~log gy(y)], (4)

where py stands for the real probability distribution and ¢y
refers to the distribution estimated by the entropy model.
The overall compression model can be viewed as an optimi-
zation of the weighted sum of R and D. Formally, the prob-
lem can be solved by minimizing the following
optimization with a trade-off coefficient A as follows:

0., 0p, ép =argmin R+ \D, 5)

0p.0p.0p

where 0, denotes the parameter for the entropy model. The
optimal parameters 6,6, 6, cause the model to achieve an
overall good rate-distortion performance on the image x
that follows x ~ py. Different \ values indicate different
rate-distortion trade-offs, depending on the requirements of
different applications.

Though the idea of rate-distortion optimization is also
applied to traditional compression schemes, learning-based
methods finally make the joint optimization of all the com-
ponents feasible. The opportunities and challenges are
listed below:

e  Global Optimization. The major difference between
learned image compression and the traditional hyb-
rid codec lies in their optimizations. Instead of hand-
craft tuning, learned image compression models can
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be automatically tuned to any differentiable metric,
e.g., SSIM [13], MS-SSIM [14] and perceptual differ-
ence [15], which is calculated by neural networks. In
addition, while the traditional hybrid coding frame-
work is usually improved at the scale of individual
components, in learning-based methods, all modules
are trainable, and it is possible to optimize all param-
eters and components jointly. However, it is nontri-
vial to acquire good performance in end-to-end
learning compression because of the difficulties in
optimization.

e  Full-Resolution Processing. Convolutional neural net-
works support the full-resolution processing of
images, while hybrid frameworks usually process
partitioned blocks. Full processing can bring more
benefits to entropy modeling with more context and
avoid the blocking effect caused by partitioning.
Full-resolution processing also comes with an
increase in complexity. Because the perceptive field
of a convolutional kernel is limited, the network
needs to be deepened to perceive more large regions
and improve modeling capacity.

e  Rate Control. With joint optimization, the whole model
can directly target the rate-distortion constraint, while
in hybrid schemes, the additional rate-control compo-
nent is employed and may not produce an optimal
approximation. However, for a large portion of learn-
ing-based methods, multiple models need to be
trained for different rate-distortion trade-offs. The
other single-model variable-bit-rate architectures are
usually much more time-consuming. Therefore, prac-
tical applications of these methods are sometimes
limited.

3 OVERVIEW OF PROGRESS IN RECENT YEARS

Since the pioneering work of Toderici et al. [10] in 2015
exploited recurrent neural networks for learned image com-
pression, much progress has been made. Benefiting from
the strong modeling capacity of deep networks, the perfor-
mance of learned image compression has exceeded that of
JPEG to BPG (HEVC Intra), and the performance gap is wid-
ening further. The milestones of learned image compression
are summarized in Table 1. Early works aim to search for
possible architectures to apply transform coding with neu-
ral networks and propose end-to-end trainable solutions.
Ballé et al. [11], [16], [20] proposes a learning-based frame-
work with GDN nonlinearity embedded analysis and syn-
thesis transforms for learned image compression, while
Toderici et al. utilize recurrent models for variable-rate
learned compression [10], [17].

To make the network end-to-end trainable, the quantiza-
tion component, which is not differentiable based on the
definition, should be designed carefully and approximated
by a differentiable process. Some works replace the true
quantization with additive uniform noise [20], [24] while
others use direct rounding in forwarding and back-propa-
gate the gradient of y = . In addition, Agustsson et al. [18]
proposes replacing direct scalar quantization with soft-to-
hard vector quantization to make the quantization
smoother. Dumas et al. [39] designs a model that
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TABLE 1
Summary of Important Contributions of Image Compression in Recent Years

Method Name Paper Title Published In ~ Highlight

Variable-Rate RNN [10] Variable Rate Image Compression with ICLR 16 The first work to utilize a convolutional LSTM
Recurrent Neural Networks network for variable-bit-rate end-to-end learned

image compression.

GDN Transform [16] End-to-End Optimization of Nonlinear PCS16 Introduces GDN, a trainable decorrelation
Transform Codes for Perceptual Quality nonlinear normalization that shows a great

capability for image compression.

Full-Resolution RNN [17] Full Resolution Image Compression with ~ CVPR 17 The first practical recurrent model for variable-bit-
Recurrent Neural Networks rate full-resolution image compression.

Soft-to-Hard Quantization [18] ~ Soft-to-Hard Vector Quantization for NeurIPS 17 Introduces vector quantization for learned
End-to-End Learning Compressible compression and proposes using soft-to-hard
Representations annealing techniques to improve the performance

of networks with quantization.

Compressive Autoencoder [19]  Lossy Image Compression with ICLR 17 Residual network is first employed for CNN-based
Compressive Autoencoder image compression models. A Laplace-smoothed

histogram is used as the entropy model.

GDN Network [20] End-to-End Optimized Image ICLR 17 Introduces the multilayer nonpartitioning end-to-
Compression end architecture with GDN for image compression.

Inpainting Based [21] Learning to Inpaint for Image NeurIPS 17 Utilizes image inpainting techniques in a recurrent
Compression framework to improve compression performance.

Real-Time Adversarial [22] Real-Time Adaptive Image Compression ICML 17 The first method to adopt a multiscale framework
with adversarial loss for learned real-time image
compression.

Tiled Network [23] Spatially Adaptive Image Compression ICIP 17 Introduces explicit intraprediction with a tiled

Using a Tiled Deep Network structure in the network.

Hyperprior [24] Variational Image Compression ICLR 18 The first work to propose a hyperprior for image
with a Scale Hyperprior compression, which greatly advances the

compression performance.

Context Model [25] Joint Autoregressive and Hierarchical NeurIPS 18 Proposes combining the spatial context-model and
Priors for Learned Image Compression a hyperprior for conditional entropy estimation.

Local Entropy Model [26] Image-Dependent Local Entropy ICIP 18 Aims to better encode latent representations with
Models for Learned Image Compression an offline dictionary.

3D-CNN Entropy Model [27] Conditional Probability Models for Deep ~ CVPR 18 3D-CNN is used for learning a conditional
Image Compression probability model for a multiresidual-block-based

network.

Priming RNN [28] Improved Lossy Image Compression with CVPR 18 The recurrent compression model is improved
Priming and Spatially Adaptive Bit Rates with a proposed priming technique and spatial
for Recurrent Networks contextual entropy model.

Content-Weighted [29] Learning Convolutional Networks for CVPR 18 Proposes using a learned importance map to guide
Content-Weighted Image Compression the allocation of bits for latent code.

Generative Model [30] Deep Generative Models for Distribution- NeurIPS 18 GAN is first used for extremely low bit-rate image
Preserving Lossy Compression compression.

Multiscale CNN [31] Neural Multi-Scale Image Compression ACCV 18 Proposes a multiscale model and corresponding
contextual entropy estimation to improve
compression efficiency.

Intraprediction in Codes [32] Learning a Code-Space Predictor by BMVC 18 Explicitly designs code-space intraprediction to

Exploiting Intra-Image-Dependencies reduce coding redundancy.

Nonuniform Quantization [33] ~ Deep Image Compression with Iterative ~ ICIP 18 Proposes nonuniform quantization to reduce
Non-Uniform Quantization quantization error in the network.

Context Model [34] Context Adaptive Entropy Model for End- ICLR 19 Introduces a different approach to combine a
To-End Optimized Image Compression hyperprior and the context model for image

compression.

Energy Compaction [35] Learning Image and Video Compression ~ CVPR 19 Introduces a subband coding energy compaction
through Spatial-Temporal Energy technique for CNN-based image compression.
Compaction

GMM & Attention [36] Learned Image Compression with CVPR 20 Utilizes Gaussian Mixture Model to estimate
Discretized Gaussian Mixture Likelihoods likelihoods of symbols more accurately. Attention
and Attention Modules modules are included for improved transform

capability.

iWave++ [37] End-to-End Optimized Versatile Image TPAMI 20 Adopts lifting to build the wavelet-like transforms
Compression with Wavelet-Like with neural networks. It simultaneously supports
Transform lossy and lossless image compression.

Non-Local & 3D-Context [38] Neural Image Compression via Non-Local TIP 21 Utilizes non-local network and 3D context model

Attention Optimization and Improved
Context Modeling

to achieve improved rate-distortion performance.
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additionally learns the quantization parameters. As it is
non-trivial to train a variational autoencoder (VAE) [40]
based model that incorporates quantization, advanced opti-
mization techniques for image compression are still being
extensively studied recently [41].

When the compression network is trainable, the next
issue is to efficiently reduce spatial redundancy in the image
signal, where the transform is usually a critical part. Some
take the form of a convolutional neural network (CNN),
e.g.,, GDN [11], [16], [20] or residual block with enhanced
nonlinearity [19]. Some advanced convolutional architec-
tures like attention module [36], non-local networks [38],
and invertible structures [37] have also been employed to
improve the modeling capacity of the transforms. Others
resort to a recurrent neural network to infer latent represen-
tations progressively, which forms a scalable coding frame-
work [10]. In each iteration, the network largely squeezes
out the unnecessary bits in the latent representations. There-
fore, the final representations are compact.

After the transform, the compact latent representations
are further compressed via entropy coding, where fre-
quently occurring patterns are represented with few bits
and rarely occurring patterns with many bits. Earlier works
incorporate elementwise independent entropy models to
estimate the probability distribution of the latent represen-
tations [19], [20] and independently encode each element
with an arithmetic coder. With these initial trials, later
advanced methods explicitly estimate entropy with hyperp-
riors [24], [26], predictive models [25], [32], [34], [36], [37],
[38] or other learned parametric models [17], [27], [28].

In addition to the abovementioned methods that target
signal fidelity with learned transform coding frameworks,
there are emerging works targeting novel application condi-
tions, notably compression for machine vision [42] or
human perception at low bit-rates. According to research
on the human visual system, human eyes are less sensitive
to pixelwise distortion in areas with complex texture. There-
fore, generative models such as conditional generative
adversarial networks (GAN) can be employed to synthesize
such areas, where low-bit-rate representations can serve as
the guidance. This can be utilized to design high-efficiency
image codecs. Rippel et al. [22] first proposed utilizing the
adversarial loss function in an end-to-end framework to
improve visual quality. In later literature, Agustsson et al.
[43], Tschannen et al. [30] and Santurkar et al. [44] improve
the capacity of adversarial learning by introducing
advanced generative networks to provide superior recon-
struction quality with extremely low bit-rates. Mentzer et al.

[45] demonstrated that with a hyperprior based compres-
sion model and a generative convolutional decoder with
ChannelNorm, it is possible to achieve similar visual quality
on high-resolution natural images with only half the bit-
rates.

In summary, the tremendous progress in learned image
compression unveils the power of machine learning techni-
ques. Nevertheless, there are still a large number of prob-
lems to investigate, which requires a systematic benchmark
to illustrate critical areas where end-to-end learned frame-
works for image compression can be further improved. In
the following, we first analyze the important components
(i.e., the backbone architecture and entropy model) in detail
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and then conduct the benchmark analysis on the methods
according to various aspects.

4 BACKBONES FOR IMAGE COMPRESSION

A typical neural network backbone for image compression
is built upon the VAE architecture. The architecture encodes
images into vectors in a latent space, forming a compact
representation. With dimensionality reduction and entropy
constraints, the redundancy in the image is squeezed out by
the compressive transform. There have been a variety of
architectures for the backbone of the framework, which can
be coarsely divided into two categories, namely, one-time
feed-forward frameworks and multistage recurrent frame-
works. Each component in a one-time feed-forward frame-
work conducts the feed-forward operation only once in the
encoding and decoding procedure. Usually, multiple mod-
els need to be trained to cover different ranges of bit-rates,
as the encoder and decoder networks determine the rate-
distortion trade-off. In contrast, in multistage recurrent
frameworks, an encoding component of the network itera-
tively conducts compression on the original and residual
signals, and the number of iterations controls the rate-
distortion trade-off. Each iteration encodes a portion of the
residual signal with a certain amount of bits. Such a model
can conduct variable-bit-rate compression on its own. In the
following, we introduce both types of architectures and con-
duct a comparison analysis on them.

4.1 One-Time Feed-Forward Frameworks

One-time feed-forward frameworks have been most widely
adopted for end-to-end learned image compression. Basic
variations of the architectures in the literature are illustrated
in Fig. 1.

The first end-to-end learned image compression with a
one-time feed-forward structure was proposed by Ballé
et al. [16], where the analysis and synthesis transforms for
encoding and decoding are made up of a single-layer GDN
and inverse GDN (iGDN). This structure is then improved
to support full-resolution processing, with stride convolu-
tion and the corresponding transposed convolution [20]. In
later works, the hyperprior network [24] is introduced to
extract the side information from the latent representation
produced by the analysis transform, and the side informa-
tion can improve the entropy estimation of the latent code.

In addition to the frameworks equipped with GDN,
another kind of feed-forward network utilizing residual
blocks is proposed by Theis et al. [19] and Mentzer et al. [27].
These networks stack multiple residual blocks in both the
encoder and decoder, greatly expanding the depth of the
model. With deeper networks, the encoder and decoder can
embed more complex prior images, and they have more
flexibility in modeling nonlinear transforms. In addition,
some works adopt a multiscale structure [22], [31], which
also extends the capacity of the network.

It is reported that a more complex design of an architec-
ture with GDN may bring further improvements in compres-
sion performance [46], [47], but not as significant as that of
other contributions, such as a hyperprior. Unlike other com-
puter vision tasks, e.g., image recognition, where a deeper
network can usually bring extra gain in performance [48],
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Layer Network Network )

Fig. 1. lllustration of typical architectures for feed-forward frameworks.
The networks are divided into three categories: GDN-based networks (a)-
(c), residual block-based networks (d)-(e), and multiscale networks (f).

[49], it does not result in significant improvements in perfor-
mance to extend the architecture complexity for learned
image compression. Although deeper architectures can pro-
vide more fidelity to model the prior of the images, they are
harder to train than shallower networks, especially with a
hard bottleneck in the pipeline. However, with sufficient
capacity, due to the characteristics of this problem, an end-to-

1. In [24] the probability is models with zero-mean Gaussian and the
prediction network only generates o. In this case, we have . = 0.
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(a) Vanilla

(b) Stateful

(d) Skip-Connection

(c) Incremental (e) Stateful Propagation

Fig. 2. lllustration of the backbones of the multistage recurrent frame-
work and its variations. The main feature of these designs is that the res-
idue for one stage is taken as the input at the next stage. (a) and (b)
show the vanilla structure and its improved stateful form [10]. (c)-(e)
show different cross-stage connections [21].

end optimization process may easily fall into local minima,
and therefore, performance is not significantly improved
with increased complexity.

4.2 Multistage Recurrent Frameworks

The basic architecture and the variations of multistage
recurrent frameworks for image compression are illustrated
in Fig. 2.

The vanilla multistage framework, as an illustration of
the concept, progressively encodes the residue to compress
the image. For an example of the simplified case, in the first
stage, there is no reconstructed signal, so the residue is the
original image itself. After the encoding and reconstruction,
the residual image with respect to the reconstructed and
original image is pushed into the network to conduct the
second-stage compression. As at each stage the compression
loses some of the information, the output of the second
stage is the degraded signal of the true residue. The frame-
work compresses the residue and the residue of the residue
progressively to achieve better quality. To finally recon-
struct the original image, bits of all the stages are needed to
decode the multistage residue maps, which are added
together to form the decoded image. This kind of recon-
struction process corresponds to the Incremental structure in
Fig. 2. The vanilla multistage framework adopts a stateless
structure, where the ana‘lysis of different stages of the resi-
due is conducted independently. It is difficult for the net-
work to simultaneously compress the image and the
residue of all steps. Therefore, in the first practical
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multistage structure [10], a stateful framework utilizing long
short-term memory (LSTM) architectures [50] is introduced.
LSTM maintains a state during sequential processing that
propagates the features of the images to the following steps
to facilitate the modeling of the multilevel residue. Fig. 2
shows the unrolled stateful structure. In each stage, the mod-
ules in the pipeline take the currently processed residue and
the state from the previous stage as the input. The states are
updated and propagated for processing in the next step.
There have been studies on the aggregation of the output
of each stage. Baig et al. [21] present and analyze different
kinds of aggregation schemes. The basic Incremental scheme
adds the output of all stages together to form the final
decoded images. The loss function of the Incremental scheme
usually includes a term to encourage the output of each stage
to approximate the residue of the previous stage. A different
way to combine all the stages is to treat the multistage struc-
ture as a residual network to form the Skip-Connection
scheme. There is only one term in the loss function for such a
scheme to require that the sum of all the stages reconstructs
the original image. Unlike the Incremental structure, there is
no explicit arrangement of the residue in the Skip-Connection
structure. The outputs of all stages contribute to the final
reconstruction, each as a supplement of the reconstruction
quality with respect to the others. In addition to these two
kinds of schemes, Baig et al. reported that with the Stateful-
Propagation structure and the corresponding residual-to-
image prediction, where each step produces a prediction of
the original image rather than the residual signal, the net-
work achieves the best performance. In such a stateful propa-
gation scheme, it is important to propagate the states of the
layers to the next step to construct a refined decoding image.

4.3 Comparative Analysis

Each of the two categories of backbone architectures has its
own properties and corresponding pros and cons. The dif-
ferences are mainly due to the choice between the one-time
structure and the progressive structure. Here are some
main differences.

e Recurrent models can naturally handle variable-rate
compression, while for the feed-forward network,
multiple instances of networks need to be trained to
support a variable range of bit-rates.

e Feed-forward networks are comparatively shal-
lower, and the path of back-propagation is much
shorter. Training such a network can be easier. In
contrast, training the recurrent models requires the
back-propagation through time (BPTT) technique,
which is more complicated.

e Weights are shared across different stages in the
recurrent model; thus, the total number of parame-
ters for a practical image codec may require less stor-
age for the parameters compared with one-time
feed-forward models. However, residual signals and
image signals are different in nature, making the
training of a recurrent model more challenging.

e It usually takes more time for recurrent models to
encode and decode an image because the network is
executed multiple times.
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Despite the pros and cons, existing works report higher
rate-distortion performance in one-time feed-forward archi-
tectures [25], [28]. However, variable-bit-rate compression
is commonly required by applications, which becomes the
major barrier for end-to-end learned image compression
methods to be adopted by existing systems. More efforts are
needed to investigate an efficient way to achieve variable-
rate compression for learning-based approaches.

5 ENTROPY MODELS

Entropy coding is an important component in an image com-
pression framework. According to information theory [51],
the bit-rate needed to encode the signal is bounded by the
information entropy, which corresponds to the probability
distribution of the symbols in representing the signal. Thus,
the entropy coding component is embedded in the end-to-
end learned image compression framework to estimate the
probability distribution of the latent representations and
apply constraints on the entropy to reduce the bit-rate.

There is a large amount of research on entropy models
for learned image compression. A summary of solutions to
the problem of entropy modeling is presented in Table 2,
and we illustrate the typical structure of different variations
in Fig. 3.

Ideal entropy coding requires precise estimation of the
joint distribution of the elements in the latent representa-
tions, for each instance of the image. In earlier works, those
elements are assumed to be independently distributed [19],
[20] to simplify the design. However, even with optimized
transforms, it is still difficult to eliminate the spatial redun-
dancy in the latent maps of the images. Thus, a variety of
entropy models are proposed to further reduce the redun-
dancy in the latent code. These methods include statistical
analysis over a given dataset [18], [19], [20], [26], [35], con-
textual prediction or analysis [17], [25], [28], [29], [31], [33],
[34], [38], [52], and utilizing a learned hyperprior [24], [25],
[34] for entropy modeling. The entropy model provides the
estimation of the likelihood for all the elements, and the
expectation of the log-likelihoods is the bound of the bit-
rates in encoding these elements. With the entropy model,
in most of the works, arithmetic coding [5] is utilized to
practically losslessly encode the symbols of the latent
representations.

It is worth noting that in traditional hybrid frameworks,
improvements of the entropy model only affect entropy
coding performance. For the learned method, as all the com-
ponents are jointly optimized, a better designed entropy
model not only produces a more precise estimate of the
entropy but also changes the patterns produced by the anal-
ysis transform. As a consequence, the design of the entropy
model should also take the structure of other components in
the pipeline into consideration.

In summary, existing methods aim to provide a flexible
transform and an accurate entropy model, all of which are
neural network-based and end-to-end trainable. In addition
to the main goal of rate-distortion performance, several
issues need to be addressed in the exploration. The model
should be adaptive to different ranges of resolutions, bit-
rates, and distortions. Currently, when high-resolution cap-
turing and displaying devices emerge, high-efficiency
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TABLE 2

Description of Different Entropy Models Utilized in Learned Image Compression

Solutions

Description

Binary Direct

Masked

Binary Context-Model

Statistical Histogram

Piecewise Linear

Parametric Factorized

Gaussian (Mixture)

The proposed network directly produces binary codes, which are transmitted as
the bit-stream without entropy modeling [10]. Optional external entropy codecs,
such as adaptive arithmetic coding [22], can be applied to the bit-stream to
improve coding efficiency.

In addition to the binary code, the network also constructs a mask from the
feature to indicate the length of the binary code[23], [29], [52]. The mask is usually
transmitted together with the bit-stream. With rate-control, the overall
performance can be further improved compared to the direct scheme.

The probability distribution of all the symbols to be encoded is estimated by the
network with previously coded symbols [17] and spatially adjacent symbols [28].
The context model can more accurately estimate the probability so that the
entropy coding can be conducted with more efficiency.

The probability distribution is estimated by a histogram [18]. A variation of this
scheme is to use a Laplace-smoothed histogram for better generalization [19].
The probability density function is approximated by a parametric piecewise
linear function during training [20]. Context Adaptive Binary Arithmetic Coding
(CABAC) [6] is used to practically compress the latent codes.

A function p(x;) = f(z;,0) with trainable parameters 60 is modeled to estimate the
probability of a symbol z;. These parameters reflect the distribution of latent code
through the training set and can be generalized for all images [35], [53].
Networks based on VAE assume that the latent code follows an elementwise
Gaussian distribution. The loss function includes a term of cross-entropy between
the actual distribution and the estimated Gaussian distribution to control the bit-
rate [24], [25], [34]. Gaussian Mixture distribution is shown to better estimate the

likelihoods [36].

Context-Model PixelRNN Pixel CNN

Multistage recurrent models [17] employ PixelRNN [54], while one-time feed-

forward models [27], [31] utilize PixelCNN [55] for spatial context conditioned
probability modeling.

Masked Convolution

Masked 2D [25], [34] or 3D [38] convolutions can be seen as a simplified version of

PixelCNN for conditional probability modeling. It estimates likelihoods of a to-
be-encoded element based on decoded elements.

Side-Information Offline

Guided

Hyperprior

The latent code produced by a given encoder is analyzed offline in tiles by
learning a dictionary, and the indices are transmitted with lossless
compression [26].

The hyperprior, transmitted in the bit-stream, encodes the parameters of a

Gaussian entropy model [24] to estimate the likelihoods of the elements to be
encoded. It greatly improves the accuracy of the entropy model and it can be
combined with the context model for enhanced modeling.

compression of high-resolution images is a constantly grow-
ing need. On the other hand, with the rapid development of
large-scale parallel computing devices, e.g., GPU, models
should also be designed to take advantage of parallel com-
puting devices for higher efficiency. According to the above
analysis, the one-time feed-forward frameworks with con-
volutional neural network-powered hyperprior structures
have more potential to be scalable to a high-resolution and
to support large-scale parallelism. With this idea in mind,
we adopt a one-time feed-forward framework and achieve
one step towards obtaining superior performance with a
newly proposed coarse-to-fine hyperprior compression
model.

6 PROPOSED COARSE-TO-FINE MODEL

6.1 Coarse-to-Fine Hyperprior Modeling

As analyzed, we follow the basic framework of a one-time
feed-forward framework, which consists of an analysis
transform G, and a synthesis transform §,. G, transforms
the image to latent representations, and G; reconstructs the

image from those representations. To perform entropy cod-
ing, the latent representations are first quantized to a vector
of discrete symbols X = {X;, Xs,...,X,}. In addition, a
parametric entropy model Qx(X;0) w.r.t. the random vector
X is built to provide the estimation of the likelihoods. The
aim of entropy coding is now to jointly optimize the param-
eters in the networks to 1) accurately model the distribution
Px(X) of the random vector X with Qx(X; 6) and 2) minimize
the overall rate-distortion function with the estimated
entropy. State-of-the-art methods combine context models
and hyperpriors. In such approaches, it is first assumed that
the joint probability distribution of X can be factorized to
the product of sequential conditional probabilities as fol-
lows:
OxyXY) =TLQi(Xi|Xio1, Xica, ..., Xim, Y), (6)
where Y denotes the hyperprior, which is generated from X
and encoded to the bit-stream. When we need to decode X,
Y has already been decoded. These kinds of models need to
address two issues. First, the dimensionality and the
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Fig. 3. lllustration of entropy modeling methods. (a)-(c) Binary methods
and variations with the masking and context model, including (a) direct
modeling [10], (b) masked modeling [23], [29], [52], and (c) the binary
context model [17]. (d) Spatial context model for latent code maps [25],
[27], [34]. (e) Hyperprior entropy model [24].

corresponding bit-rate of Y should be kept low; otherwise, Y
itself may contain too much redundancy and is not effi-
ciently compressed. In such a circumstance, the hyperprior
may not provide enough information to accurately model
the conditional probability, especially for higher ranges of
bit-rates and large resolutions. Second, although contextual
conditioning can help with accuracy, it is performed in a
sequential way and is hard to accelerate with large-scale
parallel computing devices. Thus, the framework is less
scalable for input images of different sizes.

To address the issues of the sequential context models, in
the proposed method, we adopt a multilayer conditioning
framework, which improves scalability for images of differ-
ent sizes. The formulation is modified as follows:

Ax(X) = Qxx(X,Y) = Qy(Y)OQxy(X[Y). (7

The first equality in Eq. (7) holds for Y because the hyperp-
rior is generated from X in a deterministic manner. When X
becomes complex and is controlled by expanding the
dimension, Y may need to embed more information to sup-
port accurate conditional modeling. Therefore, an addi-
tional layer of the hyperprior is introduced as follows:

Qy(Y) = Qvz(Y,Z) = Qz(Z)Qyz(Y|Z), ®)

which in fact forms a coarse-to-fine hyperprior model. The
dimension of Z is reduced, and the redundancy is squeezed
out by the hypertransforms. Thus, the joint distribution
P7(Z) of the latent representation Z = {Z,,2,,...,Z,} at
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the innermost layer can be approximately factorized as fol-
lows:

Qz(Z) = Qz(Z1, Zs, ..., Zy) = HQZi(Zi)- )

With Egs. (7) and (8), the probability distribution of Y and X
can now be modeled in a conditional way, while existing
works [54], [56] show that neural networks are capable of
modeling conditional probability distributions. The hyper-
representation Y is also designed to embed the main infor-
mation of the images to be compressed. Therefore, the joint
distribution can also be approximately factorized as follows:

QX|Y) =Q(Xy,..., X,|Y) = [, Qx,x(Xi]Y),
QY|Z) =QWM,....Yo|Z) =], Qy,z(Yi|Z),

where all elements in the previous layer can be utilized as
the conditions to estimate the distribution of the latent
representation at the upper layer. Although no contextual
conditioning is conducted here, contextual conditioning can
be implicitly modeled in the information flow from X to Y
and then used to predict X from Y. Unlike existing block-
conditioning context models, in the proposed framework,
the estimation of the probability for each element utilizes
information from a larger area due to the coarse-to-fine
structure. This helps to explore long-term correlations in
images and improves the compression performance, espe-
cially for high-resolution images.

(10)

6.2 Network Architecture

The overall structure of the end-to-end learned coarse-to-
fine framework is shown in Fig. 4 jointly with the encoder
and decoder. The analysis transform network encodes the
input image as the latent representation X, which is then
quantized with a rounding operation. It aims to squeeze out
pixelwise redundancy as much as possible. We exploit
GDN as the activation in the analysis transform and inverse
GDN in the synthesis transform. We conduct coarse-to-fine
modeling with multilayer hyper analysis and a symmetric
hyper synthesis transform. According to Eqs. (7) and (8), to
estimate the distribution of X, a probability estimation net-
work is employed to process Y and predict the likelihood
Px,(X; = x;) with the estimated Qy,(X; = z;) for each ele-
ment X; in X. As stated in [24], the conditional distribution
of each element in X can be assumed to be Gaussian, and
the probability estimation network predicts the mean and
scale of the Gaussian distribution. As the latent code has
been rounded to be discrete, the likelihood of the latent
code can be calculated as follows:

Qx,y(X; =z;Y) =

® Tw’+%*ﬂa:i —¢ Tﬁ%fﬂ.fﬁ
O, O, )

where ¢ denotes the cumulative distribution function of a
standard normal distribution, while the mean x,, and scale
o,, are predicted from Y. The same process is conducted
w.r.t. Y and Z to estimate the probability distribution of Y.
As illustrated in Eq. (9), the probability distribution of Z can
be approximately factorized. Thus, we employ a zero-mean
Gaussian model. The likelihood of each element in Z can be

an
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Fig. 4. Overall architecture of the multilayer image compression framework. The probability distribution of the innermost layer of the hyperprior is
approximated with a zero-mean Gaussian distribution, where the scale values o are channelwise independent and spatially shared.

calculated as follows:

1 1
Qz,(Zi = %) = ¢(Z;f 2) - ¢(ZU , 2>~

Note that o, is a trainable parameter in the network. All ele-
ments in a channel in the latent representation share the
same o while each channel has an independent one.

According to information theory, the minimum bit-rate
required to encode X (or Y and Z) with the estimated distri-
bution equals the cross entropy of the real distribution
Pxy(X]Y) and the estimated distribution Qxy(X|Y) ~
N (i, 0,), which is denoted as follows:

(12)

R = H(Q) + Dgr(P||Q) = Exy[~log (Q)].

We minimize the rate-distortion function Lzp = R + A\D with
the network. To accelerate the convergence during the tra-
ining of the multilayer network, an additional information-
fidelity loss is introduced. This loss term encourages the
hyperrepresentation Y to maintain the critical information in
X during training and is formulated as follows:

(13)

min Lif = ||7(Y;0) = Xl (14)
In practice, the function F with trainable parameter 6 is one
convolutional layer with no nonlinear activation. The infor-
mation-fidelity loss takes the form of the least-square error
to make the prediction of u and o more accurate.

6.3 Signal-Preserving Hyper Transform

To conduct coarse-to-fine modeling of images, especially for
high-fidelity modeling in high-resolution or high-quality cir-
cumstances, it is important to preserve the information while
performing hyper analysis and synthesis transforms in the
succeeding hyperlayers. Therefore, the signal-preserving
hypertransform is proposed to build a framework with mul-
tiple layers. We observe that elements in the latent represen-
tations produced by the main analysis transform are much
less correlated compared with pixels in natural images, as
the spatial redundancy has been largely reduced by the pre-
vious analysis transforms. Therefore, local correlations in the
feature maps are weak, while convolutions with large ker-
nels rely on such local correlations for effective modeling. In
addition, the previous transform network consists of stride

TABLE 3
Structure of the Signal-Preserving Hypertransform

(a) Hyper analysis transform.

Name Operation Output Shape Activation
Input / (b, h,w,c) /

#1 E Conv. (3 x 3) (b, h,w,2c) Linear
Down Space-to-Depth (b,h/2,w/2,8¢c) /

#2E Conv. (1 x 1) (b, h/2,w/2,4c) ReLU
#3E Conv. (1 x 1) (b,h/2,w/2,4c) ReLU
#4E Conv. (1 x 1) (b,h/2,w/2,¢) Linear

(b) Hyper synthesis transform.

Name Operation Output Shape Activation
Input / (b,h/2,w/2,c) /

#1D Deconv. (1 x 1) (b,h/2,w/2,4c) Linear
#2D Deconv. (1 x 1) (b,h/2,w/2,4c) ReLU
#3D Deconv. (1 x 1) (b,h/2,w/2,4c) ReLU
Up Depth-to-Space (b, h,w, c) /

#4D Deconv. (3 x 3) (b, h,w,c) Linear

convolutions with ReLU activation. Stride convolutions
downsample the feature maps, while activation functions
such as ReLU intuitively disable some of the filter neurons
that produce negative values and make the response sparser.
Because the dimension of these convolution layers needs to
be limited to ensure the gradual factorization of the latent
representation, the original hypertransform loses much
information during processing.

In summary, the issues of the original analysis transform
in the proposed architecture fall into two categories: 1) Orig-
inal analysis transforms fix the number of channels and
downsample the feature maps, which reduces the dimen-
sion of the latent maps. 2) Combining large convolution ker-
nels with ReLUs at the beginning of the analysis transform
or the end of the synthesis transform will lose some infor-
mation that has not been transformed, limiting the capacity.

The signal-preserving hypertransform is designed to
facilitate the multilayer structure by preserving information
for coarse-to-fine analysis. The structure of the analysis and
synthesis transform network is illustrated in Table 3.
Instead of using large kernels in the filters, we employ a rel-
atively small filter in the first layer with no nonlinear activa-
tion, and we conduct 1 x 1 convolutions in the remaining
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Fig. 5. Information aggregation subnetwork for the reconstruction of the
decoded image. The main latent representation (Main Repr.) and the two
layers of hyperrepresentations (L1 Repr. and L2 Repr.) are aggregated
for the reconstruction.
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layers. The first layer in the network expands the dimension
of the original representations. Combined with succeeding
nonlinear layers, the expansion of dimension preserves the
information of the original representations while support-
ing nonlinear modeling. We exploit a space-to-depth opera-
tion to reshape the tensor of the representations, making
spatially adjacent elements scatter in one location but in
different channels. In this way, the succeeding 1 x 1 con-
volutions are able to conduct nonlinear transforms to
reduce spatial redundancy. At the final layer of the network,
we conduct a dimensionality reduction on the tensor to
make the representation compact. We symmetrically design
the hyper synthesis transform to produce Y in Eq. (7) as the
conditional prior for the outer layer, which is taken as the
side information for reconstruction.

6.4 Information Aggregation for Reconstruction

In the decoding process, the synthesis transform maps latent
representations back to pixels. To best reconstruct the image,
the decoder needs to fully utilize the provided information in
the bit stream. Practical image and video compression usu-
ally exploit side information to improve quality. With this
idea in mind, we take hyperlatent representations as side
information and aggregate information from all layers of the
hyperlatent representations to reconstruct the decoded image
in the proposed framework. The architecture of the informa-
tion aggregation decoding network is shown in Fig. 5. Both
the main latent representation and the higher order represen-
tations of smaller scales are upsampled by the decoding net-
work to half the size of the output image. A fusion is
conducted with a concatenation of the two representations.
The fused representation is then processed by a residue block
and then upsampled to the scale of the output image.

By fusing the main representation and the hyperrepre-
sentations, information of different scales contributes to the
reconstruction of the decoded image, where the higher-
order representations provide global information and the
others preserve details in the image. The fusion process is
conducted at smaller spatial resolutions to avoid high
computational complexity. After the fusion of features, we
employ a single residue block with peripheral convolution
layers to map the feature maps back to pixels.

6.5 Implementation Details
We follow the same network structure and hyperpara-
meters as [24] in the analysis and synthesis transforms,
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while the last layer of the original synthesis transform is
removed. For the probability estimation network and the
information-aggregation reconstruction network, we summa-
rize the key properties in Tables 4 and 5, respectively. We
train the network with the rate-distortion tradeoff, specified
in Eq. (5). We train multiple models with different A to encode
images to different bit-rates. Models optimized with MSE loss
function are trained with A € {1.2 x 1073,1.5 x 1073, 2.5 x
10738 x 1073,1.5 x 1072,2.0 x 1072,3.0 x 1072}, and those
optimized with MS-SSIM loss function are trained with A €
{10, 25,45, 70, 100, 200, 300, 360}. The typical width (number
of channels) of the transforms is set to ¢ = 128, corresponding
to Table 3, and ¢ = 192 for the main analysis and synthesis
transforms. To provide enough degrees of freedom for high
bit-rates compression, we double the width of the network
when )\ > 8 x 1073 for MSE or A > 70 for MS-SSIM.

The network is trained on DIV2K [57] dataset. The dataset
contains 800 lossless images with 2K resolution on average.
We down-sample the original images to half of their resolu-
tions as an augmentation. In each training iteration, we ran-
domly sample 256 x 256 patches from images. We adopt a
multi-step training strategy. We first pre-train the main anal-
ysis and synthesis transforms for 200,000 iterations. After
that, we fix the parameters of the main transforms and train
the fine-grained hyper transforms progressively. Each group
of hyper transforms (i.e., the fine-grained groups and the
coarse-grained groups of hyper transforms) is trained for
20,000 iterations. Next, we train the Information-Aggregation
Reconstruction subnetwork for another 20,000 iterations.
Finally, we end-to-end tune the whole network for 400,000
iterations to complete the training.

7 EVALUATION

7.1 Datasets
End-to-end learned image compression is a self-supervised
problem where distortion metrics measure the difference
between the original image and the reconstructed image
and the bit-rate corresponds to the entropy of the latent
code. Thus, no extra labeling labor is needed, and many
existing large-scale image sets, e.g., ImageNet [58] and
DIV2K [57], can be used to train networks for image com-
pression. To reduce possible compression artifacts in the
images, the lossy-compressed images are usually down-
sampled before they are used for network training.
Commonly used testing image sets include Kodak [59]
and Tecnick [60], which contain high-quality natural images
that have not been lossy-compressed. The Kodak dataset
consists of 24 images with resolution 512 x 768, with a wide
variety of content and textures that are sensitive to artifacts.
Thus, it has been widely used to evaluate image compression
methods. For the Tecnick dataset, the SAMPLING testset
is used for evaluation in some works. In contrast to Kodak,
this dataset contains images with higher resolution
(1200 x 1200), which can serve as a supplemental, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3065339,
benchmark for image compression methods that can have
different performance on images with different resolutions.
In addition, in recent years, the CVPR Workshop and
Challenge on Learned Image Compression (CLIC), with the
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goal of encouraging research in learning-based image com-
pression, has attracted much attention in the community. A
testing dataset consisting of images captured by both
mobile phones and professional cameras is provided and
updated year by year. The images have higher resolutions,
on average 1913 x 1361 for mobile photos and 1803 x 1175
for professional photos. Evaluation results on this dataset
indicate compression performance on images with rela-
tively high resolutions.

7.2 Rate-Distortion Performance

Although the overall history of the development of end-to-
end learned image-compression methods is not as long as
that of hybrid coding standards, there have been a signifi-
cant number of works on this topic, and tremendous prog-
ress has been made. However, few studies have thoroughly
evaluated rate-distortion performance on various images
and compared baselines (i.e., anchors). It is nevertheless
valuable to compare performance on technical merits to
investigate which direction truly affects performance. In the
following, we summarize the performance of selected
works. The contributions in these works include different
methods for entropy modeling, novel architecture design
and normalization.

7.2.1  Evaluation Protocol

Three datasets, i.e., Kodak, Tecnick and CLIC 2019 validation
set, are used in the evaluation corresponding to three different
levels of resolution and different content. For the evaluated
learning-based methods, we average the metrics of the bit-
rate (bpp) and the distortion (PSNR and MS-SSIM) across the
dataset for different models, which are usually trained with
different trade-off coefficients A. We compare the learning-
based methods with JPEG, BPG, and VVC. For these hybrid
codecs, the metrics are averaged at different quality factors
(QFs) or quantization parameters (QPs). To illustrate the com-
parison, we show the results for rate-distortion curves in
Fig. 6. We also calculate the BD-rate [61] with respect to the
bit-rate and PSNR over the three datasets. As not all methods
cover the whole range of bit-rate and PSNR, we separate dif-
ferent bit-rate ranges for evaluation and comparison, marked
as low, median, high, and full. Bit-rate ranges are different
among datasets due to variations of content, but full ranges
are selected to cover the variation of image quality from poor
to transparent, as shown in Table 6. The BD-Rate results are
shown in Table 7. We analyze the results and summarize the
important properties in the following.

7.2.2 Entropy Model

The design of the entropy model is the main driving force of
improvements in rate-distortion performance. The design of
entropy models in end-to-end learned image compression
has developed through the period from contextual binary
entropy models [17] to hyperprior models and spatial /
cross-channel entropy estimation [24], [25]. Specifically, as
shown in Fig. 6, a leap in gain occurred with the emergence
of hyperpriors, which have been adopted by many other

2. The results of NeurIPS18 correspond to the publicly released
code, which does not include auto-regressive context model.
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frameworks. Despite great success, modeling contextual
probability is still a challenging topic in image modeling
due to variation in resolution. As shown in Table 7, the con-
text model-based method [34] may have unstable gain over
BPG at different levels of resolution, while the proposed
methods achieve consistent superiority over the anchor.

7.2.3 Depth of the Network

The depth of the network is a comparatively less important
factor in performance, while in other computer vision tasks,
networks with a deeper architecture usually perform better
than those with fewer layers. Some works [46], [62] also con-
firm this observation. Instead of building complicated net-
work architectures, work may focus more on the specific
design of the networks to better model the image prior. How-
ever, it has been reported that the network should consist of a
sufficient quantity of parameters, and the width of the net-
work should be large enough for effective modeling of
images, especially for higher ranges of bit-rates and higher
quality [34].

7.2.4 Normalization

It is reported in [24] that batch normalization [63], com-
monly used to improve the performance of neural net-
works, does not bring significant improvement. However,
Balle et al. proposed generalized divisive normalization [11],
[53], which is proven to be able to decorrelate the elements
in images to improve overall performance. Most state-of-
the-art solutions adopt normalization and its inverse in the
main encoding and decoding transform. However, it still
remains as a topic in future research to reduce spatial
redundancy more efficiently with normalization.

7.2.5 Summary

We evaluate the rate-distortion performance of different
methods developed in recent years. As we can see from the
results, great progress has been made to improve the rate-
distortion performance, where the decorrelation normaliza-
tion and the hyperprior model bring significant improvement.
Nevertheless, we also see large variations in performance on
different testing datasets. Compared with existing works, the
proposed method achieves a more consistent gain on different
content and resolutions.

7.3 Studies on the Proposed Method
7.3.1 Coarse-to-Fine Modeling

We propose the coarse-to-fine hyperprior model to reduce
the bit-rate. We conduct ablation studies to evaluate the
coarse-to-fine design. In this experiment, we benchmark on
a subset from the LIU4K dataset [64], to evaluate the perfor-
mance at different resolutions but having the same content.
Images in LIU4K dataset are of 4K resolutions. We down-
sample the images to 1080p (1920 x 1080) and 540p
(960 x 540) resolutions to build three subsets of different
resolutions. We calculate BD-Rate on the R-D curves, with
the single-layer hyperprior model as the anchor. The BD-
Rates results are shown in Table 8. As shown, the coarse-to-
fine model achieve R-D performance improvements over
the original single layer model. We also show that the
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Fig. 6. Rate-Distortion Curves. The methods include PCS18-ReLU, PCS18-GDN [53], ICLR18-Factorized, ICLR18-HyperPrior [24], NeurlPS18 [25],
ICLR19 [34], CVPR17-RNN [17], CVPR18-Condition [27], BPG-4:4:4 [9], VTM8-4:4:4 [8] and JPEG [1]. We conduct the evaluation on the three data-
sets Kodak, Tecnick and CLIC 2019 (validation set). PSNR and MS-SSIM are used as the distortion metrics. We convert the MS-SSIM values to dec-
ibels (—10log ;,(1 — d), where d refers to the MS-SSIM value) for a clear illustration, following [24].

coarse-to-fine models achieves more significant improve-
ments in BD-Rate reduction on high-resolution images. It
especially benefits emerging high-resolution applications.

7.3.2 Information-Aggregation Reconstruction

The Information Aggregation Reconstruction (IAR) subnet-
work is designed to improve reconstruction quality. It
aggregates image representations at different granularities
to fully utilize transmitted information for reconstruction.
To analyze the effect of the IAR component, we conduct
ablation studies considering the forms and granularities of

the aggregated features. The results are shown in Fig. 7 and
Table 9. There are two types of feature forms, i.e., Hyper
information retrieved right after the hyper synthesis trans-
forms, and Mean of Gaussian distributions generated by the
prediction subnetwork [47]. These feature maps can be agg-
regated at different resolutions, i.e., at the small-resolution
stage before the synthesis transform (SYN), or at the full-
resolution stage within the IAR subnetwork. With the pro-
posed coarse-to-fine hyperprior model, the hyperpriors can
be aggregated at different granularities, i.e., Fine and Coarse.
We empirically analyze the effect of combining these factors
in the ablation study. As shown in Fig. 7, the fusion of
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TABLE 4
Structure of the Probability Estimation Network
Layer InShape  OutShape K S Activation
Unfold ¢, h,w ¢,5,5,h,w / / None
Transpose ¢,5,5,h,w  h,w,¢,5,5 / / None
Reshape h,w,¢,5,5 h-w,c55 [/ / None
Conv h-w,c,5,5 h-w,c55 3 1 LeakyReLU
Conv h-w,¢,55 h-wc3,3 3 2 LeakyReLU
Conv h-w,¢,3,3 h-w,c,3,3 3 1 LeakyReLU
Reshape h-w,e,3,3 h-wec-9 [/ / None
Dense h-w,c-9 h-wc-2 / / None
Reshape h-w,c-2 h,w,c-2 / None
Split h,w,c-2 h,w,c,2 / / None

K and S are short for kernel size and stride, respectively. After the split, one
half of the tensor is used as mean in the Gaussian distribution. We calculate
the absolute value of the other half as scale.

TABLE 5
Structure of the Information-Aggregation Reconstruction
Network, Corresponding to Fig. 5

#Layer LayerType C-In C-Out K S Activation
#1 Deconv. 256 192 5 2 None

#2 Deconv. 192 192 5 2 Leaky ReLU
#3 Deconv. 192 192 5 2 LeakyReLU
#4 Deconv. 384 64 5 2 None

#5 Conv. 64 3 3 1 LeakyReLU
#6 Conv. 3 3 1 1 None

R#1 Conv. 384 192 3 1 LeakyReLU
R#2 Conv. 192 192 3 1 LeakyReLU
R#3 Conv. 192 384 3 1 LeakyReLU

R #1 refers to the first layer in the residual block. C-In and C-Out refer to the
numbers of input and output channels, respectively. K and S are short for ker-
nel size and stride, respectively.

TABLE 6
Specifications of BD-Rate Range on Different Testing Datasets
Dataset Bit-Rate Range PSNR Range
Kodak 0.25 bpp - 1.40 bpp 26 dB-40dB
Tecnick 0.12 bpp - 0.70 bpp 26 dB-43dB
CLIC 0.20 bpp - 1.05 bpp 28 dB - 40 dB

Full ranges are illustrated, and low, median, high ranges are chosen respec-
tively within the full ranges.

multi-resolution representation shows significant benefits,
and it is beneficial to aggregate information at both coarse
and fine granularities. Utilizing hyperprior representation
tends to show better performance than concatenating Mean
information. Besides, an aggregation at the stage of higher
resolution leads to improved performance.

7.3.3  Visual Quality Analysis

We conduct visual analysis on the reconstructed images in
Fig. 8, where we compare our method with the representa-
tive learning-based method (ICLR18-Hyperprior) [24] and
hybrid coding method (BPG-4:4:4) [9]. As shown, the pro-
posed method reconstructs images with fewer artifacts at
lower bit-rates. Specifically, the hybrid coding method relies
on image partitioning. It inevitably causes blocking artifacts.
Besides, the directional intra predic‘tion scheme in the
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TABLE 7
Evaluation of the BD-Rate on Different Methods (optimized by
PSNR) on Different Image Sets

Method Bit-Rate Range

Low Median High Full
Kodak
CVPR18-Condition  76.18% N/A N/A N/A
VTMS8-4:4:4 -20.85% -18.26% -15.86% -18.91%
PCS18-GDN 42.09%  40.64%  41.62%  41.68%
ICLR18-Factorized  35.46%  32.75%  28.59%  32.96%
ICLR18-HyperPrior  6.11% 3.06% 0.32% 4.07%
NeurIPS18 -4.63% -4.62% -5.03% -4.68%
ICLR19 -6.27% -4.75% -4.18% -5.40%
CVPR17-RNN 189.38% 174.02% 193.28% 176.16%
JPEG N/A 113.28% 104.99% N/A
Ours -10.65%  -8.74% -8.31% -9.42%
Tecnick
CVPR18-Condition N/A 123.13% N/A N/A
VTMS8-4:4:4 -31.63% -30.14% 27.56% -30.25%
PCS18-GDN 49.28%  4357%  32.34%  43.00%
ICLR18-Factorized  41.29% 37.64% 25.58% 36.70%
ICLR18-HyperPrior  5.64% -0.23% -7.82% 0.98%
NeurIPS18 -12.76% -14.84% -18.16% -14.54%
ICLR19 9.85% -10.92% -11.78% -11.65%
CVPR17-RNN N/A  210.12% 224.64% N/A
JPEG 222.30% 193.80% 187.90% 198.24%
Ours -14.82% -14.56% -16.48% -14.15%
CLIC?
CVPR18-Condition  88.73% N/A N/A N/A
VTMS8-4:4:4 -23.43% -20.31% -17.52% -21.22%
PCS18-GDN 53.34%  53.53%  54.26%  53.54%
ICLR18-Factorized 4937%  4945% 50.85%  49.64%
ICLR18-HyperPrior 12.00% 8.97% 9.99% 10.63%
NeurIPS18 -3.53% -1.40% 4.45% -1.88%
ICLR19 -7.52% -4.33% -2.17% -4.61%
JPEG 124.30% 115.73% N/A N/A
Ours -14.49% -12.21% -11.64% -12.86%

We set BPG-4:4:4 as the anchor. The negative values reflect the average bit-rate
saving compared to the anchor at the same level of distortion. Best performan-
ces are marked in bold, while the second best ones are underlined.

TABLE 8
BD-Rate Evaluation for the Coarse-to-Fine
Hyperprior Model at Different Resolutions, With
the Single-Layer Hyperprior as the Anchor

Resolution BD-Rate
4K -4.65%
1080p -2.65%
540p -1.97%

hybrid codec does not handle multi-directional edges well,
as shown in Fig. 8. More visual results are provided in the
supplementary material, available online.

7.4 Cross-Metric Evaluation

End-to-end learned image compression models can usually
be trained towards many objectives as long as they are dif-
ferentiable. Recent works usually evaluate two versions of

3. The results of CVPR17-RNN on CLIC 2019 validation dataset is
not included, as the available code does not support the resolutions in
this dataset.
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Fig. 7. Rate-Distortion curves by different aggregation methods. The
methods vary in aggregated feature forms (Hyper and Mean), feature
granularity (Fine and Fine+Coarse), and fusion stage (SYN and /AR).

TABLE 9
BD-Rate Corresponding With R-D Curves in Fig. 7
Settings BD-Rate
Hyper IAR (Fine+Coarse) -8.38%
Mean IAR (Fine+Coarse) -7.34%
Mean IAR (Fine) -6.35%
Mean SYN (Fine) [47] -4.17%

We use setting “No Aggregation” as the anchor.

the proposed method by training the model with both MSE
(for PSNR) and MS-SSIM, as MS-SSIM better models visual
quality for humans. Models trained on one objective may
not perform well on the other metrics. Specifically, models
trained with MS-SSIM as the loss function usually show

0.372 bpp 0.380 bpp
(a) Ours (b) ICLR18-Hyperprior
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lower PSNR values for a given range of bit-rates. Different
models, which should achieve different performances,
show similar levels of PSNR if they are trained using
MS-SSIM. In contrast, different PSNR-optimized models do
show different performance in MS-SSIM evaluation. For
this class of models, those with higher results in PSNR usu-
ally perform better in MS-SSIM.

Because end-to-end learned models can be tuned with
both PSNR and MS-SSIM, we are able to investigate the rela-
tionship between different metrics and objectives. We
employ the perceptual metric, which is widely used in image
enhancement and synthesis [15], [65], as the metric for cross
evaluation. Following the settings of perceptual loss in [15],
the L, distance of the output feature maps corresponding to
four layers in the VGG-16 [66] with respect to the original
image and the reconstructed image are evaluated. Zhang
et al. [65] show that the distance of the feature maps of such
layers reflects the distortion with respect to human percep-
tion. Thus, we employ the metric as a supporting evaluation
of the reconstruction quality for image compression methods.

To show the comparison, we plot the Perceptual-PSNR and
Perceptual-MS-SSIM curves in Fig. 9. Note that the distances
with respect to the four layers are averaged for the illustration.
Here are our observations of the experimental results.

e For a given level of PSNR, models trained on
MS-SSIM show significantly less perceptual distor-
tion, while for a given level of MS-SSIM, those
trained on PSNR have less perceptual distortion.

0.417 bpp
(c) BPG-4:4:4

(d) Ground Truth

Fig. 8. Visualization of the reconstructed images by the proposed method, ICLR18-Hyperprior, and BPG.
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Fig. 9. Evaluation of perceptual distance [15] (a lower value corresponds to better quality) with respect to PSNR and MS-SSIM for different methods.

The methods correspond to those in Fig. 6.
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TABLE 10
Encoding and Decoding Time (seconds) for Various Methods
Task Device Ours Context[34] VTM-8
Encode 1 Core 24.4 50.1 467.5
2 Cores 13.6 49.4 467.5*
4 Cores 9.2 48.4 467.5*
4 Cores + GPU 49 N/A N/A
Decode 1 Core 69.8 186.5 0.3
2 Cores 414 181.2 0.3*
4 Cores 28.8 177.7 0.3*
4 Cores + GPU 7.1 N/A N/A

When a model is optimized for a metric, compared
with others that are not optimized for that metric,
the optimized one shows a higher perceptual distor-
tion at the same level of the metric.

e For models tuned with the MS-SSIM loss function,
those with higher performance in MS-SSIM-bpp
evaluation tend to result in larger perceptual distor-
tion at a certain level of MS-SSIM. Although the
same phenomenon is observed in the Perceptual-
PSNR curve, it is not as significant.

To summarize, we observe in the experimental results that
there exists a gap of different metrics, especially for models
with better performance on one metric. Although end-to-end
learning-based methods can be trained towards different
objectives, they tend to be over-optimized on that specific objec-
tive only. This phenomenon is also related to recent work on
the investigation into the trade-off between perception and
distortion [67], [68]. In circumstances where we reserve more
bit-rate for an image encoded with a better codec, as metrics
such as PSNR and MS-S5IM show high enough values at that
bit-rate, we may not be provided with the expected visual
quality. A better assessment technique is needed, especially
for the development of high-performance image compression
methods. Furthermore, in real-world applications, the images
are mostly consumed by human users, while there is a trend
of developing image processing systems for machine vision
tasks. To jointly optimize an image compression framework
for both human perception and machine intelligence remains
to be explored in future research.

7.5 Discussion
7.5.1 Efficiency on Parallel Devices

We also benchmark the encoding and decoding time for the
proposed method, the context-model-based method [34]
and VTM-8 as a hybrid codec. We test the encoder and
decoder on a machine with Intel Core i7-7700K CPU and an
NVIDIA RTX 2060 Super GPU. When doing encoding and
decoding for an image from CLIC 19 validation dataset, we
restrict the resources the program could utilize to test its
time consumption on different parallel scales. The results
are presented in Table 10. As shown, while the proposed
method achieves competitive rate-distortion performance
against context-model based methods, as it does not rely on
the context model, it is not limited to using a serial decoding

4. We set QP=25 in this test. VIM-8 does not support multi-thread
execution, so its time consumption should remain the same with differ-
ent numbers of available cores.
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scheme and therefore runs faster than those methods in the
experiments. VIM is designed with no thread-level parallel-
ism, thus not accelerated by multi-core devices.

7.6.2 Comparison With VVC

We compare the learning-based image compression meth-
ods with VVC [8], the advanced hybrid transform coding
scheme. Based on the experimental results, we summarize
different characteristics of VVC and the advanced learning-
based methods.

VVC. VVC has improved design in picture partitioning,
intra prediction, transform, and quantization etc. over
HEVC / BPG, and it achieves better rate-distortion perfor-
mance than benchmarked end-to-end learned image com-
pression methods. Besides, as the rate-distortion optimization
(RDO) is done only at the encoder side, VVC decoder has sig-
nificantly lower complexity. Thus, it better meets the need in
most real-world applications.

Learning-Based. Advanced learned image compression
methods adopt neural networks to learn the image encoder
and decoder automatically. Thanks to the rapid evolution of
machine learning techniques, tremendous improvements in
rate-distortion performance have been witnessed in the past
five years. These methods tend to be more flexible than
hand-crafted hybrid coding methods, as they can be end-to-
end optimized to avoid conflicts between components.
They can also be potentially accelerated by parallel comput-
ing devices. Existing works have shown the potentials of
end-to-end learned to achieve higher performance and bet-
ter efficiency in the near future.

8 CONCLUSION

In this paper, we conduct a systematic benchmark on exist-
ing methods for learned image compression. We first sum-
marize the contributions of existing works, with novelties
highlighted, and we also analyze and discuss insights and
challenges in this problem. With inspiration from the tech-
nical merits, we propose a coarse-to-fine hyperprior frame-
work for image compression, trying to address the issues of
existing methods in multiresolution context modeling. We
conduct a thorough evaluation of existing methods and the
proposed method, which illustrates the great progress
made in the research, as well as the driving force for such
advancements. The results also demonstrate the superiority
of the proposed method in handling images with various
content and resolutions. Further cross-metric evaluation
indicates the future research direction of jointly optimizing
an image compression method for both machine intelli-
gence systems and human perception.
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